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Coupling of a Planar Waveguide
and a Dielectric Disk

Rohinton S. Dehmubedyiember, IEEE,and Paul Diament

Abstract—The complete analytic solution to the problem of cou- with losses due to radiation from the curved surfaces. This
pling between a slab waveguide and a ring has been derived. Thecan be analyzed by a variety of methods, including the
two-configuration problem is reduced to two simultaneous single- Wentzel, Krammers, Brillouin (WKB) approximation, con-

configuration problems by the method of equivalence. These are f | - 11 d th id le b fi
independently solved to yield the exact solution in terms of modal '0'Mal mapping [11], and the wide-angle beam propagation

content. The results are illustrated with a numerical example and Method (BPM). These methods are appropriate as long as the
corroborated independently by a variational approach. radius of curvature is much greater than the wavelength. The

analysis breaks down completely in the region where the radius
of curvature is of the order of the wavelength.

The other numerical methods that can be used to solve
. INTRODUCTION the problem are the FEM (finite-element method) and BEM

ING LASERS [1]-[3] show great potential as light(boundary-element method ) [12]. Both of these are relatively

sources for monolithic integration. The resonator is @Mmplex, and do not give a good intuitive understanding of the
ring, rather than a pair of mirrors. A waveguide in clos@roblem. The FEM also suffers from spurious solutions. The
proximity to the ring provides the output coupling. The resBPM, even when applicable, does not give the backscattered
onator requires no cleaving and the ring can be definéadiation.
photolithographically, which means better control over the We have developed a method to solve this problem in
cavity length and topology of the design. The alternative di§s entirety. The scattered field is given as a distribution of
tributed feedback (DFB) and distributed Bragg reflector (DBRfie modes of the waveguide. The analytic solution obtained
lasers need gratings of some sort, which make their fabricatién applicable for all values of the parameters and gives
a relatively complex task. Ring lasers, by comparison, ag@nsiderable insight into the problem. The approach is to
much simpler to fabricate, especially the index-guided rigduce the complex configuration to two separate simple ones
waveguide structures. based on the equivalence principle.

Quite a few papers characterizing the ring laser and itsThis paper is organized as follows. Section Il defines
fabrication technology have been published, revealing sube problem and reduces it to two simpler problems. In
stantial improvement in fabrication and materials technolog$ections Ill and IV, we solve these reduced problems. Finally,
The most recent publications show that high-power singlél Section V, the results are put together to obtain the solution.
frequency ring lasers, along with detectors, can be made on a
substrate without resorting to cleaving [4]-[7]. [I. PROBLEM DEFINITION

The analysis of lasers begins with that of the resonator.,:ig. 1 shows a dielectric slab waveguide in proximity to,
Indeed, a better understanding of the basic mechanismsaaf exciting, a dielectric slab ring. Thes are the refractive
mode coupling and excitation efficiency can help in designinggexes at the frequency of excitatiofi.is the input optical
these as yet not fully understood devices. The semiconducigy;rce exciting the waveguide; this could be a butt-coupled
ring laser's operating characteristics depend strongly on thger, |aser diode, or focused beam of light. The arrow indicates
back reflections and coupling between the counter-propagatifg direction of propagation of the input wave. The unknown
modes [8], [9]. The output waveguide coupler also affects the represents the field distribution for the structure; it is the

performance [10]. _ _ complete vector field (electric and magnetic) excited by this
The general methods of analyzing such ring lasers tregfrce.

the waveguide coupler and ring as separate discrete opticaly the following sections, the equivalence principle of
elements. This approximation provides an accurate model oglctromagnetic theory [13, pp. 37-39] and the superposition

if the ring and coupler lengths are much larger than tginciple for electromagnetic waves are used to reduce the
wavelength. This approach provides no information about thggplem to simpler equivalents [13, Ch. 1 and 2]
backscattered radiation, which may be highly pertinent to the

design. The curved region is usually modeled as a waveguigle conversion of Two-Configuration Problem into

Manuscript received May 28, 1997; revised March 9, 1998. Two Slngle-Conflguratlon Problems
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to impose the purely hypothetical discontinuity in tangential
electric field, from the incident plus scattered field outside the
region to zero inside [13].

Using superposition, the original problem is reduced to two
configurations: the “hypothetical” one and a “transmission
equivalent,” as shown in the first row of Fig. 2. The trans-
mission equivalent will be simplified, but consider first the

Source Input (S) hypothetical problem. There are two sources in this modified

(b) configuration: one is the input sourcg the other is the

electric and magnetic surface curréibn the separatrix. This
configuration may be decomposed into a superposition of two
partial problems, each with only one of the sources, as in the
This is the complete field, including both the electric andecond row of Fig. 2.
magnetic parts. This field is considered known; in fact, we Since the field inside the separatrix is zero, the interior
specify the sourceS by giving its resultant fieldF;. The region’s index (permittivity) may be altered to any other
solution to the original problem, the fielll, is expressed as aone, as this cannot affect the zero field. The arbitrary index
superposition of the incident fielff; and a “scattered” field. distribution chosen is the uniform distribution with the index of
To reduce the one complicated problem to two simple ondkge region immediately outside the separatrix. The hypothetical
we partition the space into two regions, defined by the interiproblem is now reduced to a “reflection equivalent,” in which
and exterior of an imaginary surface we call the separatrix. THee field inside the separatrix is the “incident field”; that
scattered field is comprised of a “reflected” fid{g outside the defines the source, while the field outsidd:y, is the negative
arbitrary surface (curve in cross section) and a “transmittedf the “reflected field” of the original problem.
field F inside the surface. The separatrix is shown in crossIn the transmission equivalent, the external waveguide can
section (in bold) in the first diagram of Fig. 2. be dropped, as this can not affect the zero field. The current
Consider a hypothetical problem in which the field insid€ is equal to the discontinuity in the field, vzl at the
the separatrix is forced to be zero, while the field outside ti$eparatrix. The last row of the figure shows that the scattered
separatrix is maintained exactly as in the original problefields of the original waveguide-and-ring problem can be
(see the second diagram of Fig. 2). In order to have zepbtained from two equivalent versions, one with only the ring
field inside the hypothetical closed region, but not outsid@nd the other with only the waveguide.
there must exist surface current sources on the separatrix.
The surface in this case is cylindrical with its axis normdp- Equivalent Problem
to the plane of the paper. The current source is labéled The final result so obtained from Fig. 2 is depicted in
the figure; as per Maxwell's equations, it is equal in strengtfig. 3. The original problem has been broken down into
and perpendicular to the discontinuity in the tangential fielthe superposition of the input fielf; and a scattered field
and imposes the assumed discontinuity in the field. It is, abtainable from two “single-configuration” problems. These
general, composed of both electric and magnetic currendse thetransmissionand reflection equivalentsThe shape of
Mathematically defined magnetic currents are needed héne separatrix has been chosen as a circular cylinder.

Fig. 1. The original problem’s waveguide and ring.



DEHMUBED AND DIAMENT: COUPLING OF PLANAR WAVEGUIDE AND DIELECTRIC DISK 1463

C - Generalized Current Source

Field =0

@

ny Fig. 4. Transmission equivalent.

[

c section, the problem defined as tthensmission equivalerig
¥4 addressed, as described in Fig.is the radius of the circular
separatrix that carries the surface cur€nt,, ny, andns are
the indexes of refraction of the various regions of the optical
ring andry, ro are its inner and outer radii.
In the transmission equivalent, we need to solve €br
(b) subject to the condition that the field outside the ring is zero.
Fig. 3. The equivalent two single-configuration problems. (a) ReflectiBince the curren€ is, in general, composed of both electric
equivalent. (b) Transmission equivalent. and magnetic components, this results in a relation between the
two currents. For the geometry of the transmission equivalent,

At first glance, things may not look any simpler, in that théhe general field can be split into separate TE and TM modes
surface currenC is expressed in terms of discontinuities irf14, Ch. 8, p. 306]. In the simpler case of TE waves, the field is
Fy, an unknown. The way to make use of this decompositigjiven by the three components,, (r, 8), He(r,6), H..(r,6)}.
is to solve each of the two single-configuration problenmBhe y-axis is normal to the plane of the paper.
independently, for any arbitrary specified current-soufte
Then use is made of the fact that this current source is tAe Fields and Their Description
same for both the problems.

In short—from the Green’s function for each of the tW(%h
single-configuration problems, find the fields for any (arbitrary,
but specified) current-sourc€. From this, determine the
current that generates both

Due to the circular symmetry, the electric field must be of
e form

E,(r0) = > {A(konar) + BYi(konar)he!®,

I=—c0

Fy =F; re<r<R (1)
and Ey(r,0) = Z {Ci Ty (kongr) + DiYi(kongr)}ei?,
F4 =0. l=—o0

r<r<ry (2)
These two conditions should allow solution for the current oo ,
C. Once the currenf has been found, use the same Green's &,(r,0) = Z EiJy(konar)e’, 0<r<r; (3
functions to determine the fields I=—co
N >’ — , 9 4
Fy= _Fy E,(r,0)=0 r>R 4)

ko is the free-space propagation constahtand Y; are the

Bessel functions of ordel of the first and second kind,
Fg =Fy. respectively.
The boundary conditions of continuity of tangential elec-
¢ and magnetic fields is applied at each interface, except
for the prescribed discontinuity at = R, due toC. A
two-dimensional (2-D) case has been assumed by ignoring
variation along they-axis. The boundary condition translates

In Section Il, it was shown that the ring resonator probleinto continuity of £¥(+,8) and (9/9r)&,(r,6) across the

can be reduced to two independent, but simultaneous, prtloundaries. The circle of field discontinuity carries electric
lems: thetransmissionand thereflection equivalentsin this current alongy and magnetic current alongy

and

Except for the sign of’;, these are the exact fields that were,
sought, without approximation.

Ill. THE TRANSMISSION EQUIVALENT
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B. Current-Source Description +2 Waveguide |

The unknown current-sourc€ consists of two indepen- 1 \
dent surface currents: electric current-souféeand magnetic ")
current-source?,,. Expand these current sources as Fourier " " m
series as follows: e

oo
J. = Z e et (5)
l=—00
oo
Tm = Z my /Y (6)
l=—0c0

wheree;, m; are theith electric and magnetic currents’ Fourier
series components, respectively. ‘

The complete solution can be obtained once the cuént .
(composed of7. and.7,;,) is found by solving the transmission ;
and reflection equivalents simultaneously. The transmission
equivalent gives the relation governigg and.7,, in order to Fig. 5. Reflection equivalent, waveguide excitation by a current-sodirce
have the field outside the current rigg > R) equal zero. . . _

The result is that (see Appendix), for the field outside thihereV is an arbitrary volume enclosing the current-sources

circle to be zero, the following condition has to be satisfied</e: </ and.S'is the surface bounding the volum&/ andds
are the volume and surface element vectors (directed outward),

e =j kony by Ci(koniR) 4 (7) respectively.J., J, are the electric apd magnetic (volume)
WHo . current sources of the field§, H, while £,, H, are the
my =—by Cy(kgn1 R) 0 (8) sourceless normal modes.

) Consider a current-souro@ near a dielectric waveguide,

wherel, is a constant: as shown in Fig. 5. Le€(x,z) and H(z,z) be the fields
1) Ci(komR) = Ji(koni ) + A Yi(kon1 R) is a cylinder generated by this source. The problem is reduced to two

function; dimensions (inz and z) by ignoring the variation along the

2) A; = B;/A, is given by (61);
3) ko is the free-space propagation constant;
4) n; is the refractive index of the cladding;

y-axis. Let the se{ E,.(x, 2), H,(x,~)} be the modes of the
waveguide satisfying the homogeneous wave equation, i.e.,
the source-free solutions. These modes are solutions of the

5) R s the radius of the current-carrying circle; Helmholtz equation and form a complete orthogonal set. They
6) Ji,Y; are the Bessel functions of order consist of a finite number of guided modes and a continuum

Also note that, in all the above expressions, n,4, nz are of radiation modes. Since the modes form a complete set, the
arbitrary indexes, i.en, can be less thany, ns, or any other field W(z,z) can be expressed as

binati th f.
combination fhereo Wz, 2) = 5 at Wi, )+ an ()W (2, 2).

n

IV. REFLECTION EQUIVALENT (10)

This problem is slightly more complex than the transmissiofy,q superscripts+ and — signify forward-propagating

equivalent. We begin by stating one of the many forms of thg,4 backward-propagating waves, respectival(z, z) =
Lorentz reciprocity theorem (LRT). This will be used to solv S(x,2), H(z,2)], Walz,2) = [Enle,2), Holz,2)]

the problem of waveguide excitation by the surface currents. (2.2), and Ha(z,7) are vector fields described by [13
The results of this section will be used later to find the normal;. " 5 AT ,

.7
modes of the waveguide excited by the current source. Finally, ] . —ifnz
we apply the forcing condition of the reflection equivalent, E(x,2) =[en(2) + ezn(x)]e : " (11)
namely, that the field inside the current ring should equal the E, (2,2) = [en(®) — con(@)]et?n? (12)
input excitation F’;. HF (2, 2) = [hn(2) + han(2)]e 95 (13)
HS <) = [T n zn +if =
A LRT 7 (2,2) = [~ha(@) + han(@)]e (14)

where the subscriptn signifies the axial component of thth

The LRT applied to the waveguide-excitation problem u%‘node’s vector field. For convenience, we retain the summation

Ch. 71is sign for the continuum; however, strictly speaking, it should be
// (& x Hy — E, x H) - dS replaced by summation over the guided modes and integration

" " over the continuum. The normalization condition is written as
S

o0
:/// (\7€E’n_\7’ran)dV (9) /700 CnXh'rn'dAzzén’rn.
vV

Thus, E,, and H,, form a complete orthonormal set.
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Here, we had to incorporate the backward-propagating 4z
: . . + A
modes into the most general solution, denoted by the negative an*(+R) :
superscript. In order to have a consistent sign for the Poynting " .
vector, the coefficienk,,(x) must have a negative sign in the | "1 _________ "2 ___________________________

magnetic fieldd, (x, z) [16, pp. 14, 15] [14, Ch. 8, p. 323].

Expanding £ and H in terms of their normal modes,
substituting for £,, and H,,, and noting the normalization
results in

a7 (e) - ae) =44 [[[ G BE - g 1) av
|

(15)
+ + L an~(-R)
ap(z2) —ay(z1) =—3 /// (Je By =T - Hy)dV Fig. 6. Contour of integration.
v
(16)

the region—R < » < +R. A convenient way to evaluate this
where—R < 21 < z» < +R andV is the volume enclosed integral is by Fourier-series decomposition of the normal fields
by the planes: = 2; andz = 2. E,, and H,,. The obvious choice is the cylindrical coordinate
For the surface currer®, the volume integral reduces tosystem(r, 6, ) at the current ring center. The contour integral
a one-dimensional integral around the contour of the circle then reduced to a sum of complex exponentials.
within the volumeV (see Fig. 5). Now, the physical con- 1) Evaluation ofa(z): The modes can be separated into TE
straints that the currents can only radiate outward are appli&d TM, and are each independently considered. Consider the

as follows: TE field (see Fig. 6). Expanding the normal modes as a Fourier

aH(—R) =0 series,

Ef(z,2)= i (konyr) Ax(+n)ei* 4 21

and n (2,2) zk: k(konar) Ar(+n)e’™ § (21)

a, (+R) = 0. Hi(z,2)=> —j Fona T (konyr) Ap(+n)e’*® 6 (22)

Who
This results in the following expression faey,(z) for —R < e
z < +R: Ep(w,2) =Y Jelkonar)Ax(—n)e™ § (23)
k

oy 1 e k o
2= /CM (Jer B = Jm B db QD B2y = 37 = o Tikomr) Aw(=n)el™ 6. (24)

k

- =_1 BT CHt . .
a, () =—3 /CZ(Z) (Je- By = T - H7)dl - (18) Let ¢; andm; be the Fourier components of the electric and
magnetic current source, respectively. For convenience, define

and
, . kony
+ 1 _ _ mp=—Jj my. (25)
af(+R)==% ¢ (Jo By —Jm-Hy)dl  (19) who
. ¢ From (17), (18), and the above expressions for the normal
a, (—R) =—3 ]{ (e —TIm-HF)dl  (20) modes (21)—(24),
C
where C1(Z) is the fraction of circle (contour) enclosed by‘ln =3 Z Z et Ju(kona R) — my Ji (Kon1 R)]
the planess = —R andz = 7, Cy(Z) is the fraction of circle
(contour) enclosed by the planes= +k andz = Z (see -A(—n) / IV R dy (26)
Fig. 6). The contour” is the complete current loop, which is i (8)
the contour defined by, (+R) or Co(—R). Thed's are the imilarly
components of the scattered electric field [13, pp. 359— 3611 '
These equations are valid for the continuum modes as welk (z) = -1 Z Z ler Ju(koni R) — my Ji,(kona R)]
l k

B. Condition Imposed on the Field Ag(+n) / AEHD B o 27)
Equations (17) and (18) describe the normal field excitations C2(0)
an(#) in terms of the overlap integral of the normal modes anghere » — — R cos 6 for 0 < 6 < +x and

currents These are contour integrals around a circular sector.

The currents’. and.7,,, are expressed in terms of their Fourier a,, (-R) =—7R Z le—i Ji(kon1 R)

series. This integral has to be evaluated for an arbitrary circular

arc in order to express the field excited by the current ring in —m’_; J{(kon1R)]Ai(+n)  (28)
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+ __ )
af (+R) =—7R zl: [e—i Ji(koniR) oA
—m’ ; J{(kon1 R)]Ai(—n). (29) ~
metal waveguide
C. Evaluation of the Radiated Field in Terms of Normal Modes » W,
The required integrals are v
. 7 +
R / ™40 = fF(0) =2R8, m=0 (30) Fi
Cq (6) (power input = 1.0)
i _ sin m@
frn(e) - 2R m ? m 7& 0 (31) Fi +Fr -Fr n F=0
and m
o <>
R MY =f-(0) =2R (n —0), m=0
C2(8)
(32) T c C
fa®) =) = —2R 2200, 2,
m

(33) Fig. 7. Scattering by a dielectric disk inside a metal-clad waveguide. The
problem has been shown in terms of its reflection and transmission equivalents.

Note that0 < # < 7 and> = —Rcos#. . . L .
Substituting fora,,(z) and the Fourier series for the normaIA" Scattering by a Dielectric Disk Inside
T a Metal-Clad Slab Waveguide

modes, and rewriting the resultant field as a Fourier series,

(10), (17), and (18) result in Fig. 7 shows the problem of a simple dielectric disc inside
1 a metal-clad waveguide. The waveguide walls are assumed
W(z,z) = ) Z (erJr — myJy,) lossless. The width¥ of the waveguide is chosen such that
Lkn it is a single-mode waveguide. That is to say, it supports only
4 1= i one TE mode: thd’E; mode. The problem is shown in terms
: {Ak(_”) fi <COS { D W (x,2) of its reflection and transmission equivalents. and ns are

. the refractive indexes of the material filling the waveguide
— —1 < — . .

+ Ax(+n) i <COS [ I D W, (x,z)} and the disk, respectively.

(34) 1) Data-Fitting Approach: From (35), we can see that the

problem is reduced to finding an optimal set Kf’; that

where W,, is the complete field vectdiE,,, H,]. The argu- minimizes the error il€(«, z). This is essentially a 2-D (i.e., in
ment of .J; is dropped for convenience, but is understood andz) data-fitting problem. This method of solution is highly
to be kon, R. Equation (34) gives the fieltV(z,~) for all generalized and is applicable to both continuum (dielectric

—-R < 2z < +R. waveguides) and discrete mode problems.
Setting up such problems requires elaborate numerical pro-
D. Forcing Condition gramming and memory management, which is nothing new,

. . . nd has been done routinely. For this paper, it was carried out
We now apply the condition of the reflection equivalen : - .
. : o Lo or a small number of terms to illustrate the principle. This can
For reflection equivalence, the field in the region interior t

the current ring (the separatrix), i.@.< r < R, is forced to Be easily scaled up for a more elaborate problem (see Fig. 8).

. o o Depending on how the summations over the modes (inte-
equalF;, the input excitation. Substituting for the currents . ; ; .
- . grations in case of a continuum) are to be performed, either
and m,; from the transmission equivalent (7), (8),

. E(r,8) or £(x, z) can be used for the point matching. Once the
Fyw,2) = Jniko Z b(ClJy — CLJL) vectorb_lCl is obtained, it is a simple mner-product operation
to obtain the scattered modes. They are given as

A=) Fn(6) Wi, 2) 03 (-R) == 2L 3 A1 (8 (36)
0 g

+ Ar(+n) fx(0) W (2, 2)]  (35)

for 0 < Va2+22 < R, with § = cos™!(—z/R). This

2y oA
aH(+R) = =2 3" b A(~1FAL(B). (37)
equation is to yield the unknown coefficierits b

wWho

As a final note, the expression for the scattered field is exact
in terms of the currents. One is not limited to point-matching
to obtain the vectob;C;, but it is usually the easiest approach.

The technique is finally illustrated with an example. Th©ther approaches like “Galerkin’s” method could be applied,
above results are easily extended to TM modes as well. Theéapending on how the problem lends itself to it.
analysis is analogous to that of the TE modes and are nofig. 8 shows the results for such a calculation. The total
reported explicitly. number of modes ¥ modes) taken into consideration for

V. NUMERICAL RESULTS
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I Reflection coefficient | The integrations are around the periphery of the separatrix
circle; f(z,z) is known inside that circle.
As we cannot readily invert the Green'’s function operator,
n1=1.000 0.8 .. . .
. we seek a variational expression farWe look for a solution
=VE o, . -
“3,=07r14 L | o Nmax=4 to the adjoint problem, a field(x, ») such that the known
2=005 W Nmodes=9 g(#) can be expressed in terms of the same Green'’s function
;{:;oo 0.4 by ¢ = b - G. If this adjoint field were at hand, we would
’ - have the following equivalent expressions for the scattering
' coefficient a:
€r
20 40 60 80 100 120 b-fg-c
=g-c=b-G-c=b-f=—"—.
@ @=9c c=bl=3Ta
i Reflection coefficient | The last of these is not only homogeneous iand ¢, but
variational too: ifb andc change byb andéc, thena changes
ny=1.000 0. by an amount proportiqnal t6§6c. This means that a poor
n3=Ver N guess forb and ¢ can yield fairly good estimates fat. In
W=0.714 A detail,
;:o.osw 6.
= a
M= 1.00 g(0) = /b(a:, z) -Gz, 2;,0) dA (40)
0.
Er
20 40 60 80 100 120 ¢= /b(a}, Z) ) f(a:,z) dA. (41)

(b) . . . _
Fig. 8. Scattering by a dielectric disk inside a metallic waveguid The integrations are over the interior of the separatrix circle.

Point-matching approach. “the variational expression far is, in detail,

expressing the scattered field determines the complexity of the / j{ bz, 2) - f(x, 2) g(6) - c(6)d6 dA
system. AsNmodes increases, the number of Fourier terms 0= " T

required to express the currefWmaz) and the field(N k)
increases too. This is because the higher order evanescent
modes decay faster, requiring more Fourier terms to express ) ]
their rapid spatial decay. This increases the number of sample§Tom the modal expansions of fields and the LRT, we can
required to get a best fit for the current. One has to taR¥Press the Green’s function, within the separatrix circle at
a sufficiently large number of samples so that the resul@st. as

obtained from (36) and (37) converge within the desired " B

numerical accuracy. For Fig. 8, this was approximately (e % 0) = Z W, (2, 2)uz — 2(0))W,, (2(6), (6))

samples (uniform sampling) along the radial and angular "

= . (42
/ j'{ bz, %) - Glz, % 6) - (60) db dA

directions, totalling approximately 100 uniformly distributed +Z W (@, 2)p(2(8) — 2)W, (x(8), 2(6))
sample points within the disk. Even for a few terms, the results n
are remarkably good. The electric-field reflectivity increases (43)

and approaches 1.00 as the permittivity.) increases. The , ) ) ,
graph shows a resonant dip at around— 105. The point where;(¢) is the unit step function and th&’s are normal

where the resonant dip occurs varies, but converges as Tades of the waveguide. There are two values: Gought,
number of modesNmodes increases, indicating that theOn€ for the positive-traveling mode at > K and one for

scattered field is described with increasing accuracy and tifd¢ negative-traveling mode at < —R; each applies to a
the additional terms improve the accuracy only marginally. Particular mode of the waveguide (subscutis the incident

2) Variational Approach: The current on the separatrix cir-M0de)- Again, from the LRT, we have

cle of radiusR is sought, for use in an expression for the +ion  Ti—
scattering coefficients. Symbolically, the currents arehe g’i(e) _W’jr(x(e)’z(e))
Green's function is7 and the given incident field inside the g (0) =W, (2(6), 2(9)).

separatrix circle isf. Then,G - ¢ = f. However, we do not

really need: (at least not to great accuracy); we really want the | 1US, We need to obtain reasonable estimates of#{atfx)
scattering coefficient — ¢ - ¢, whereg is a known operation and ¢(#) so that even better estimates ofcan be extracted

on the current. In detail, frorr_1 the variational expression. _ _ _
Since the normal modes of the waveguide, which enter into

f(z,2) :j{ G(xz,2,0) - c(h) db (38) the Green’s function, are orthogonal over the entire plane,
we can expect that, over just the separatrix’s interior and
a= ]{ g(6) - c(0) db. (39) especially if the circle is large, the adjoint fiebdz, z) should
primarily be the incident mode, with significant contributions
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from the other modes only if they are nearby in the spectrum. | Reflection coefficient |
Retaining just2K + 1 modes near the incident one, we have 1
K n1=1.000 0.8
bL (377 Z) = Z /jleJ?l+k (377 Z) (44) n3=ver Nmax=3
k=—I w=0714 A |°:6 Nk=5
) ;___ 005 W Nmodes=9
_ _ = a 0.4
bu(w,2) = Y B Wi (e,2) 45) | 100
k=—K 0.2
and we seek the best set of constahtSimilarly, the currents fr

may be expressed as a Fourier series 0 20 40 6080 100 120

Fig. 9. Scattering by a dielectric disk inside a metallic waveguide. Varia-
tional approach.

L
«8) = Z 1l (46)

{=—L
if we retain 2L + 1 harmonics. The unknowns are now thdesults. However, we believe our results to be more accurate.

9K + 1 constants? and the2Z + 1 constantsy. The required First, there are no approximations made as far as modeling

integrations can be done once and for all (not necessarilyGhthe scattered field is concerned and, more important, our
closed form) as results from point matching and the variational method are

consistent.

Dy, = / j[ Wirgn(z, 2) - Gz, 2,0) /' d6 dA  (47)
VI. CONCLUDING REMARKS

Nig = / Wirsn(z, 2) - f(z,2) dA The problem of coupling between a dielectric ring/disk and
. ’ a dielectric slab waveguide has been solved analytically by
f Wargi(z(6), 2(0)) - 4 &Y (48) reducing the problem to two simultaneous (but simpler and

solvable) independent problems involving the ring and wave-
and 4, is unit vector along the current. We have two of eacfuide alone. The method is fairly general and can be applied to

of these—one for each direction of propagation. other geometries and problems. The method is most efficient
The variational expression for the constant vectérand for small radii of curvatures (relative to wavelength) and
~ is just yields fast-converging solutions. For large radii, the numerical
BN~ complexity increases. Since the two problems are independent,

a= 3Dy (49) we can apply various levels of approximations to find the
currentse;, my. The original intractable problem requiring
On differentiating with respect to each of these vectors, [oundary conditions across two different geometries is now
follows that the optimal solution is given by reduced to the simpler problem of finding the currents. The
solution can be made progressively more accurate by taking a

B[N —aD]=0 (50) larger number of terms into consideration.
and The usefulness of the method of equivalence is not in ob-
taining another numerical method, but in making simplifying
[N—aD]-v=0 (51) approximations and coming up with accurate analytic solutions

i.e., 4 and~ are annihilated by the matri%y — a.D. Note that [20]. This will be stressed in subsequent papers.

this matrix ha2K + 1 rows and2L + 1 columns. If K = L,

then the matrix is square and the variational solutiondfds APPENDIX
a root of the characteristic equation On applying the continuity conditions at the interface=
det[N — aD] = 0. (52) r1, we get in matrix form
. . . Jl(/%‘oﬂ?ﬂ’l)
If K # L, then the corresponding condition requires the rank’ Jl(konsry)
of the nonsquare matrix to be sufficiently low. The condition
is eﬁectivelg written as g - [ Ji(kongry) Yi(kongr) ][Cz }
(ng/n3) Ji(kongr1) (ng/n3) Y/(kongr1) | [Di
det |V —aD 0 —0 (53) (54)

0 (N —aD)? o
Similarly, atr = rs,

The eigenvalue with the largest absolute value is the one that |

selected. The results for such a calculation are shown in Fig. { Jl(ko?}Q‘T?) Yl(km}g”) } : [OI }

They are in accordance with earlier results [18], [19] in thel(7a/73) Ji(kongr2)  (ng/ns) Y{(kongr2) | [ Dy

form of the curve, except for the point where the resonance dip _ [ Ji(konira) Yi(konira) } ) [Az}

occurs. Our results show the resonant dip to occur at slightly (n1/n3) Ji(konira) (ni/ns) Y{(konir2) | |Bi ]’

lower (5% lower at 105) permittivity than shown in previous (55)
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The field needs to satisfy boundary discontinuity conditions atlIn the special case when the dielectric ring degenerates into
the current source at= R, given by [13, Ch. 2, pp. 19-20] a disk, i.e.,

P x (MG, 0) = Hg" (r, 0)) = =T
7 X (ggi;n(Tv 0) — 83(;)1“(7)7 0)) = Tm-
The superscripts1 andout signify the regions insidér < R)

and outsidgr > R) the current-carrying circle, respectively.
Substituting

EM(r,0) =0
H (r,6) =0
g, _ __1 3 g,
Hy' (r, 0) = The O £, (r,9)

and expanding the field and current in terms of Fourier series
and equating term-by-term results in

k. . .
7= Jwi:)l (Aj(koni R) + BiY{ (komiR)) ¢ § 1
l
(56)
TIm == (AcD(koniR) + BiYi(kona R)) &% 6 (57) 12

i

where’ signifies the derivative with respect to the argument.[3]
The factor(B;/4;) is determined from the boundary condi-

tions atr = r; andr = 7. [4]

A. The Rath(Bl/Al)
The boundary conditions for interfaces, »» can be rewrit-

(5]

ten as (6]
Jy(konsry) | _ |G
£ [Jl’(kongrl)} = My(r) [DJ SN
C A
Mg(TQ) . |:Dll:| :M1(7>2) . |:B§:| . (59) [8]
These combine into (o]
—1/ N, gty | Dilkonar) | A/ E
M (r2) Mg(72) Mg (r1) |:Jl/(/€0”37’1) = Bi/E, 1101
(60)
where [11]
Mfl(72) [12]
— { Ji(konra) Yi(konyra) }_1 [13]
(ni/n3) Ji(konir2) (n1/n3) Y/ (konir2)

(n1/n3) Y/ (koni72)
—(n1/ns) Ji(koni72)
and, similarly, for the other matrices and inverses.

Use has been made of the fact that the Wronskiafvgfr), [16]

Yi(z)} equals2/(wx). Equation (60) can be solved for the
ratio B;/A; = A; simply by matrix multiplication. It can be

(mkonzra/2) [ —Yl(konm))} [14]

Ji(konaira) [15]

written explicitly as (18]
01] Meg-J

= 19

A L0] M d (61) [19]

where J is the transpose di/;(konsr) J{(konsri)] and [20]

Meq = My ' (r2) - My(ra) - Myt (r1).

A=

To —T1=a

(60) reduces to

_ [g ?gﬂ . 62)

o ]

On expanding and simplifying, the expression yields

_ ﬂng(koTLla)Jl/(koTLga) - ﬂljl/(konla)Jl(koﬂga)
ﬂljl(koﬂga)nl(koﬂla) — ﬂgJ{(/ﬂoﬂga)Y}(/ﬂoﬂla) )
(63)
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