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Coupling of a Planar Waveguide
and a Dielectric Disk

Rohinton S. Dehmubed,Member, IEEE,and Paul Diament

Abstract—The complete analytic solution to the problem of cou-
pling between a slab waveguide and a ring has been derived. The
two-configuration problem is reduced to two simultaneous single-
configuration problems by the method of equivalence. These are
independently solved to yield the exact solution in terms of modal
content. The results are illustrated with a numerical example and
corroborated independently by a variational approach.

Index Terms—Coupling, ring lasers, ring resonators.

I. INTRODUCTION

RING LASERS [1]–[3] show great potential as light
sources for monolithic integration. The resonator is a

ring, rather than a pair of mirrors. A waveguide in close
proximity to the ring provides the output coupling. The res-
onator requires no cleaving and the ring can be defined
photolithographically, which means better control over the
cavity length and topology of the design. The alternative dis-
tributed feedback (DFB) and distributed Bragg reflector (DBR)
lasers need gratings of some sort, which make their fabrication
a relatively complex task. Ring lasers, by comparison, are
much simpler to fabricate, especially the index-guided rib
waveguide structures.

Quite a few papers characterizing the ring laser and its
fabrication technology have been published, revealing sub-
stantial improvement in fabrication and materials technology.
The most recent publications show that high-power single-
frequency ring lasers, along with detectors, can be made on a
substrate without resorting to cleaving [4]–[7].

The analysis of lasers begins with that of the resonator.
Indeed, a better understanding of the basic mechanisms of
mode coupling and excitation efficiency can help in designing
these as yet not fully understood devices. The semiconductor
ring laser’s operating characteristics depend strongly on the
back reflections and coupling between the counter-propagating
modes [8], [9]. The output waveguide coupler also affects the
performance [10].

The general methods of analyzing such ring lasers treat
the waveguide coupler and ring as separate discrete optical
elements. This approximation provides an accurate model only
if the ring and coupler lengths are much larger than the
wavelength. This approach provides no information about the
backscattered radiation, which may be highly pertinent to the
design. The curved region is usually modeled as a waveguide
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with losses due to radiation from the curved surfaces. This
can be analyzed by a variety of methods, including the
Wentzel, Krammers, Brillouin (WKB) approximation, con-
formal mapping [11], and the wide-angle beam propagation
method (BPM). These methods are appropriate as long as the
radius of curvature is much greater than the wavelength. The
analysis breaks down completely in the region where the radius
of curvature is of the order of the wavelength.

The other numerical methods that can be used to solve
the problem are the FEM (finite-element method) and BEM
(boundary-element method ) [12]. Both of these are relatively
complex, and do not give a good intuitive understanding of the
problem. The FEM also suffers from spurious solutions. The
BPM, even when applicable, does not give the backscattered
radiation.

We have developed a method to solve this problem in
its entirety. The scattered field is given as a distribution of
the modes of the waveguide. The analytic solution obtained
is applicable for all values of the parameters and gives
considerable insight into the problem. The approach is to
reduce the complex configuration to two separate simple ones
based on the equivalence principle.

This paper is organized as follows. Section II defines
the problem and reduces it to two simpler problems. In
Sections III and IV, we solve these reduced problems. Finally,
in Section V, the results are put together to obtain the solution.

II. PROBLEM DEFINITION

Fig. 1 shows a dielectric slab waveguide in proximity to,
and exciting, a dielectric slab ring. The’s are the refractive
indexes at the frequency of excitation.is the input optical
source exciting the waveguide; this could be a butt-coupled
fiber, laser diode, or focused beam of light. The arrow indicates
the direction of propagation of the input wave. The unknown

represents the field distribution for the structure; it is the
complete vector field (electric and magnetic) excited by this
source.

In the following sections, the equivalence principle of
electromagnetic theory [13, pp. 37–39] and the superposition
principle for electromagnetic waves are used to reduce the
problem to simpler equivalents [13, Ch. 1 and 2].

A. Conversion of Two-Configuration Problem into
Two Single-Configuration Problems

Consider the dielectric slab waveguide alone, as shown in
Fig. 1(b)—the ring is absent. Let be the field excited in this
configuration by the input source of the original problem.
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(a)

(b)

Fig. 1. The original problem’s waveguide and ring.

This is the complete field, including both the electric and
magnetic parts. This field is considered known; in fact, we
specify the source by giving its resultant field . The
solution to the original problem, the field, is expressed as a
superposition of the incident field and a “scattered” field.
To reduce the one complicated problem to two simple ones,
we partition the space into two regions, defined by the interior
and exterior of an imaginary surface we call the separatrix. The
scattered field is comprised of a “reflected” field outside the
arbitrary surface (curve in cross section) and a “transmitted”
field inside the surface. The separatrix is shown in cross
section (in bold) in the first diagram of Fig. 2.

Consider a hypothetical problem in which the field inside
the separatrix is forced to be zero, while the field outside the
separatrix is maintained exactly as in the original problem
(see the second diagram of Fig. 2). In order to have zero
field inside the hypothetical closed region, but not outside,
there must exist surface current sources on the separatrix.
The surface in this case is cylindrical with its axis normal
to the plane of the paper. The current source is labeledin
the figure; as per Maxwell’s equations, it is equal in strength
and perpendicular to the discontinuity in the tangential field
and imposes the assumed discontinuity in the field. It is, in
general, composed of both electric and magnetic currents.
Mathematically defined magnetic currents are needed here

Fig. 2. The conversion of a two-configuration problem into two equivalent
single-configuration problems.

to impose the purely hypothetical discontinuity in tangential
electric field, from the incident plus scattered field outside the
region to zero inside [13].

Using superposition, the original problem is reduced to two
configurations: the “hypothetical” one and a “transmission
equivalent,” as shown in the first row of Fig. 2. The trans-
mission equivalent will be simplified, but consider first the
hypothetical problem. There are two sources in this modified
configuration: one is the input source, the other is the
electric and magnetic surface currenton the separatrix. This
configuration may be decomposed into a superposition of two
partial problems, each with only one of the sources, as in the
second row of Fig. 2.

Since the field inside the separatrix is zero, the interior
region’s index (permittivity) may be altered to any other
one, as this cannot affect the zero field. The arbitrary index
distribution chosen is the uniform distribution with the index of
the region immediately outside the separatrix. The hypothetical
problem is now reduced to a “reflection equivalent,” in which
the field inside the separatrix is the “incident field” that
defines the source, while the field outside, , is the negative
of the “reflected field” of the original problem.

In the transmission equivalent, the external waveguide can
be dropped, as this can not affect the zero field. The current

is equal to the discontinuity in the field, viz., at the
separatrix. The last row of the figure shows that the scattered
fields of the original waveguide-and-ring problem can be
obtained from two equivalent versions, one with only the ring
and the other with only the waveguide.

B. Equivalent Problem

The final result so obtained from Fig. 2 is depicted in
Fig. 3. The original problem has been broken down into
the superposition of the input field and a scattered field
obtainable from two “single-configuration” problems. These
are thetransmissionand reflection equivalents. The shape of
the separatrix has been chosen as a circular cylinder.
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(a)

(b)

Fig. 3. The equivalent two single-configuration problems. (a) Reflection
equivalent. (b) Transmission equivalent.

At first glance, things may not look any simpler, in that the
surface current is expressed in terms of discontinuities in

, an unknown. The way to make use of this decomposition
is to solve each of the two single-configuration problems
independently, for any arbitrary specified current-source.
Then use is made of the fact that this current source is the
same for both the problems.

In short—from the Green’s function for each of the two
single-configuration problems, find the fields for any (arbitrary,
but specified) current-source . From this, determine the
current that generates both

and

These two conditions should allow solution for the current
. Once the current has been found, use the same Green’s

functions to determine the fields

and

Except for the sign of , these are the exact fields that were
sought, without approximation.

III. T HE TRANSMISSION EQUIVALENT

In Section II, it was shown that the ring resonator problem
can be reduced to two independent, but simultaneous, prob-
lems: thetransmissionand thereflection equivalents. In this

Fig. 4. Transmission equivalent.

section, the problem defined as thetransmission equivalentis
addressed, as described in Fig. 4.is the radius of the circular
separatrix that carries the surface current. , , and are
the indexes of refraction of the various regions of the optical
ring and , are its inner and outer radii.

In the transmission equivalent, we need to solve for
subject to the condition that the field outside the ring is zero.
Since the current is, in general, composed of both electric
and magnetic components, this results in a relation between the
two currents. For the geometry of the transmission equivalent,
the general field can be split into separate TE and TM modes
[14, Ch. 8, p. 306]. In the simpler case of TE waves, the field is
given by the three components , , .
The -axis is normal to the plane of the paper.

A. Fields and Their Description

Due to the circular symmetry, the electric field must be of
the form

(1)

(2)

(3)

(4)

is the free-space propagation constant.and are the
Bessel functions of order of the first and second kind,
respectively.

The boundary conditions of continuity of tangential elec-
tric and magnetic fields is applied at each interface, except
for the prescribed discontinuity at , due to . A
two-dimensional (2-D) case has been assumed by ignoring
variation along the -axis. The boundary condition translates
into continuity of and across the
boundaries. The circle of field discontinuity carries electric
current along and magnetic current along.



1464 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 46, NO. 10, OCTOBER 1998

B. Current-Source Description

The unknown current-source consists of two indepen-
dent surface currents: electric current-sourceand magnetic
current-source . Expand these current sources as Fourier
series as follows:

(5)

(6)

where are the th electric and magnetic currents’ Fourier
series components, respectively.

The complete solution can be obtained once the current
(composed of and ) is found by solving the transmission
and reflection equivalents simultaneously. The transmission
equivalent gives the relation governing and in order to
have the field outside the current ring equal zero.

The result is that (see Appendix), for the field outside the
circle to be zero, the following condition has to be satisfied:

(7)

(8)

where is a constant:

1) is a cylinder
function;

2) is given by (61);
3) is the free-space propagation constant;
4) is the refractive index of the cladding;
5) is the radius of the current-carrying circle;
6) are the Bessel functions of order.

Also note that, in all the above expressions,, , are
arbitrary indexes, i.e., can be less than , , or any other
combination thereof.

IV. REFLECTION EQUIVALENT

This problem is slightly more complex than the transmission
equivalent. We begin by stating one of the many forms of the
Lorentz reciprocity theorem (LRT). This will be used to solve
the problem of waveguide excitation by the surface currents.
The results of this section will be used later to find the normal
modes of the waveguide excited by the current source. Finally,
we apply the forcing condition of the reflection equivalent,
namely, that the field inside the current ring should equal the
input excitation .

A. LRT

The LRT applied to the waveguide-excitation problem [13,
Ch. 7] is

(9)

Fig. 5. Reflection equivalent, waveguide excitation by a current-sourceC.

where is an arbitrary volume enclosing the current-sources
, and is the surface bounding the volume. and

are the volume and surface element vectors (directed outward),
respectively. , are the electric and magnetic (volume)
current sources of the fields, , while , are the
sourceless normal modes.

Consider a current-source near a dielectric waveguide,
as shown in Fig. 5. Let and be the fields
generated by this source. The problem is reduced to two
dimensions (in and ) by ignoring the variation along the
-axis. Let the set , be the modes of the

waveguide satisfying the homogeneous wave equation, i.e.,
the source-free solutions. These modes are solutions of the
Helmholtz equation and form a complete orthogonal set. They
consist of a finite number of guided modes and a continuum
of radiation modes. Since the modes form a complete set, the
field can be expressed as

(10)

The superscripts and signify forward-propagating
and backward-propagating waves, respectively.

, , , ,
, and are vector fields described by [13,

Ch. 7]

(11)

(12)

(13)

(14)

where the subscript signifies the axial component of theth
mode’s vector field. For convenience, we retain the summation
sign for the continuum; however, strictly speaking, it should be
replaced by summation over the guided modes and integration
over the continuum. The normalization condition is written as

Thus, and form a complete orthonormal set.
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Here, we had to incorporate the backward-propagating
modes into the most general solution, denoted by the negative
superscript. In order to have a consistent sign for the Poynting
vector, the coefficient must have a negative sign in the
magnetic field [16, pp. 14, 15] [14, Ch. 8, p. 323].

Expanding and in terms of their normal modes,
substituting for and , and noting the normalization
results in

(15)

(16)

where and is the volume enclosed
by the planes and .

For the surface current , the volume integral reduces to
a one-dimensional integral around the contour of the circle
within the volume (see Fig. 5). Now, the physical con-
straints that the currents can only radiate outward are applied
as follows:

and

This results in the following expression for for
:

(17)

(18)

and

(19)

(20)

where is the fraction of circle (contour) enclosed by
the planes and is the fraction of circle
(contour) enclosed by the planes and (see
Fig. 6). The contour is the complete current loop, which is
the contour defined by or . The ’s are the
components of the scattered electric field [13, pp. 359–361].
These equations are valid for the continuum modes as well.

B. Condition Imposed on the Field

Equations (17) and (18) describe the normal field excitations
in terms of the overlap integral of the normal modes and

currents. These are contour integrals around a circular sector.
The currents and are expressed in terms of their Fourier
series. This integral has to be evaluated for an arbitrary circular
arc in order to express the field excited by the current ring in

Fig. 6. Contour of integration.

the region . A convenient way to evaluate this
integral is by Fourier-series decomposition of the normal fields

and . The obvious choice is the cylindrical coordinate
system at the current ring center. The contour integral
is then reduced to a sum of complex exponentials.

1) Evaluation of The modes can be separated into TE
and TM, and are each independently considered. Consider the
TE field (see Fig. 6). Expanding the normal modes as a Fourier
series,

(21)

(22)

(23)

(24)

Let and be the Fourier components of the electric and
magnetic current source, respectively. For convenience, define

(25)

From (17), (18), and the above expressions for the normal
modes (21)–(24),

(26)

similarly,

(27)

where for and

(28)
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(29)

C. Evaluation of the Radiated Field in Terms of Normal Modes

The required integrals are

(30)

(31)

and

(32)

(33)

Note that and .
Substituting for and the Fourier series for the normal

modes, and rewriting the resultant field as a Fourier series,
(10), (17), and (18) result in

(34)

where is the complete field vector . The argu-
ment of is dropped for convenience, but is understood
to be . Equation (34) gives the field for all

.

D. Forcing Condition

We now apply the condition of the reflection equivalent.
For reflection equivalence, the field in the region interior to
the current ring (the separatrix), i.e., , is forced to
equal , the input excitation. Substituting for the currents
and from the transmission equivalent (7), (8),

(35)

for , with . This
equation is to yield the unknown coefficients.

V. NUMERICAL RESULTS

The technique is finally illustrated with an example. The
above results are easily extended to TM modes as well. Their
analysis is analogous to that of the TE modes and are not
reported explicitly.

Fig. 7. Scattering by a dielectric disk inside a metal-clad waveguide. The
problem has been shown in terms of its reflection and transmission equivalents.

A. Scattering by a Dielectric Disk Inside
a Metal-Clad Slab Waveguide

Fig. 7 shows the problem of a simple dielectric disc inside
a metal-clad waveguide. The waveguide walls are assumed
lossless. The width of the waveguide is chosen such that
it is a single-mode waveguide. That is to say, it supports only
one TE mode: the mode. The problem is shown in terms
of its reflection and transmission equivalents. and are
the refractive indexes of the material filling the waveguide
and the disk, respectively.

1) Data-Fitting Approach: From (35), we can see that the
problem is reduced to finding an optimal set of that
minimizes the error in . This is essentially a 2-D (i.e., in

and data-fitting problem. This method of solution is highly
generalized and is applicable to both continuum (dielectric
waveguides) and discrete mode problems.

Setting up such problems requires elaborate numerical pro-
gramming and memory management, which is nothing new,
and has been done routinely. For this paper, it was carried out
for a small number of terms to illustrate the principle. This can
be easily scaled up for a more elaborate problem (see Fig. 8).

Depending on how the summations over the modes (inte-
grations in case of a continuum) are to be performed, either

or can be used for the point matching. Once the
vector is obtained, it is a simple inner-product operation
to obtain the scattered modes. They are given as

(36)

(37)

As a final note, the expression for the scattered field is exact
in terms of the currents. One is not limited to point-matching
to obtain the vector , but it is usually the easiest approach.
Other approaches like “Galerkin’s” method could be applied,
depending on how the problem lends itself to it.

Fig. 8 shows the results for such a calculation. The total
number of modes ( modes) taken into consideration for
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(a)

(b)

Fig. 8. Scattering by a dielectric disk inside a metallic waveguide.
Point-matching approach.

expressing the scattered field determines the complexity of the
system. As increases, the number of Fourier terms
required to express the current and the field
increases too. This is because the higher order evanescent
modes decay faster, requiring more Fourier terms to express
their rapid spatial decay. This increases the number of samples
required to get a best fit for the current. One has to take
a sufficiently large number of samples so that the results
obtained from (36) and (37) converge within the desired
numerical accuracy. For Fig. 8, this was approximately ten
samples (uniform sampling) along the radial and angular
directions, totalling approximately 100 uniformly distributed
sample points within the disk. Even for a few terms, the results
are remarkably good. The electric-field reflectivity increases
and approaches 1.00 as the permittivity increases. The
graph shows a resonant dip at around The point
where the resonant dip occurs varies, but converges as the
number of modes increases, indicating that the
scattered field is described with increasing accuracy and that
the additional terms improve the accuracy only marginally.

2) Variational Approach: The current on the separatrix cir-
cle of radius is sought, for use in an expression for the
scattering coefficients. Symbolically, the currents are; the
Green’s function is and the given incident field inside the
separatrix circle is . Then, . However, we do not
really need (at least not to great accuracy); we really want the
scattering coefficient , where is a known operation
on the current. In detail,

(38)

(39)

The integrations are around the periphery of the separatrix
circle; is known inside that circle.

As we cannot readily invert the Green’s function operator,
we seek a variational expression for. We look for a solution
to the adjoint problem, a field such that the known

can be expressed in terms of the same Green’s function
by . If this adjoint field were at hand, we would
have the following equivalent expressions for the scattering
coefficient

The last of these is not only homogeneous inand , but
variational too: if and change by and , then changes
by an amount proportional to . This means that a poor
guess for and can yield fairly good estimates for. In
detail,

(40)

(41)

The integrations are over the interior of the separatrix circle.
The variational expression for is, in detail,

(42)

From the modal expansions of fields and the LRT, we can
express the Green’s function, within the separatrix circle at
least, as

(43)

where is the unit step function and the ’s are normal
modes of the waveguide. There are two values ofsought,
one for the positive-traveling mode at and one for
the negative-traveling mode at ; each applies to a
particular mode of the waveguide (subscript is the incident
mode). Again, from the LRT, we have

Thus, we need to obtain reasonable estimates of both
and so that even better estimates ofcan be extracted
from the variational expression.

Since the normal modes of the waveguide, which enter into
the Green’s function, are orthogonal over the entire plane,
we can expect that, over just the separatrix’s interior and
especially if the circle is large, the adjoint field should
primarily be the incident mode, with significant contributions
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from the other modes only if they are nearby in the spectrum.
Retaining just modes near the incident one, we have

(44)

(45)

and we seek the best set of constants. Similarly, the currents
may be expressed as a Fourier series

(46)

if we retain harmonics. The unknowns are now the
constants and the constants . The required

integrations can be done once and for all (not necessarily in
closed form) as

(47)

(48)

and is unit vector along the current. We have two of each
of these—one for each direction of propagation.

The variational expression for the constant vectorsand
is just

(49)

On differentiating with respect to each of these vectors, it
follows that the optimal solution is given by

(50)

and

(51)

i.e., and are annihilated by the matrix . Note that
this matrix has rows and columns. If ,
then the matrix is square and the variational solution foris
a root of the characteristic equation

(52)

If , then the corresponding condition requires the rank
of the nonsquare matrix to be sufficiently low. The condition
is effectively written as

(53)

The eigenvalue with the largest absolute value is the one that is
selected. The results for such a calculation are shown in Fig. 9.
They are in accordance with earlier results [18], [19] in the
form of the curve, except for the point where the resonance dip
occurs. Our results show the resonant dip to occur at slightly
lower (5% lower at 105) permittivity than shown in previous

Fig. 9. Scattering by a dielectric disk inside a metallic waveguide. Varia-
tional approach.

results. However, we believe our results to be more accurate.
First, there are no approximations made as far as modeling
of the scattered field is concerned and, more important, our
results from point matching and the variational method are
consistent.

VI. CONCLUDING REMARKS

The problem of coupling between a dielectric ring/disk and
a dielectric slab waveguide has been solved analytically by
reducing the problem to two simultaneous (but simpler and
solvable) independent problems involving the ring and wave-
guide alone. The method is fairly general and can be applied to
other geometries and problems. The method is most efficient
for small radii of curvatures (relative to wavelength) and
yields fast-converging solutions. For large radii, the numerical
complexity increases. Since the two problems are independent,
we can apply various levels of approximations to find the
currents , . The original intractable problem requiring
boundary conditions across two different geometries is now
reduced to the simpler problem of finding the currents. The
solution can be made progressively more accurate by taking a
larger number of terms into consideration.

The usefulness of the method of equivalence is not in ob-
taining another numerical method, but in making simplifying
approximations and coming up with accurate analytic solutions
[20]. This will be stressed in subsequent papers.

APPENDIX

On applying the continuity conditions at the interface
, we get in matrix form

(54)

Similarly, at ,

(55)
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The field needs to satisfy boundary discontinuity conditions at
the current source at , given by [13, Ch. 2, pp. 19–20]

The superscriptsin andout signify the regions inside
and outside the current-carrying circle, respectively.
Substituting

and expanding the field and current in terms of Fourier series
and equating term-by-term results in

(56)

(57)

where signifies the derivative with respect to the argument.
The factor is determined from the boundary condi-
tions at and .

A. The Ratio

The boundary conditions for interfaces, can be rewrit-
ten as

(58)

(59)

These combine into

(60)

where

and, similarly, for the other matrices and inverses.
Use has been made of the fact that the Wronskian of ,

equals . Equation (60) can be solved for the
ratio simply by matrix multiplication. It can be
written explicitly as

(61)

where is the transpose of and

In the special case when the dielectric ring degenerates into
a disk, i.e.,

(60) reduces to

(62)

On expanding and simplifying, the expression yields

(63)
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